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On the importance of weak steady shear in the 
refraction of short internal waves 

Greg Buckley, 1 Dave Broutman, 1'e'3 James W. Rottman, 4 
and Stephen Eckermann 3 

Abstract. Ray theory is used to study the refraction of 
short oceanic internal waves by a spectrum of large ampli- 
tude inertia waves superimposed on a weakly sheared steady 
current. The results suggest that the steady current has 
a significant cumulative effect on short-wave propagation 
over the timescale of a few inertia periods. The strength of 
ray convergence is also computed, as this affects short-wave 
amplitudes. Typically we find weak ray convergence and 
much slower growth toward instability with increasing verti- 
cal wavenumber than in a steady-shear critical-layer model. 

1. Introduction 

Much of the mixing in the ocean's interior is believed 
to be triggered by breaking internal waves of short vertical 
wavelength, typically a few meters (e.g. [Gregg et al, 1996]). 
Refraction may play an important role in bringing internal 
waves to such short scales and to unstable amplitudes, as 
suggested by the results of [Henyey, Wright and Flatte, 1986] 
(hereafter HWF). Their model, based partly on Monte-Carlo 
ray tracings, produces short-wave spectra and mixing rates 
that are roughly comparable with ocean measurements. 

HWF predict mixing rates by estimating the net trans- 
port, due to refraction, of wave-energy across the high- 
wavenumber part of the internal-wave spectrum. Here we 
examine two aspects of short-wave refraction that can affect 
net transport and that are not explicitly taken into account 

HWF. 
The first aspect is the effect of steady shear. In HWF, the 

short waves are refracted by a Garrett-Munk background 
of longer internal waves, without steady shear. Although 
steady shear in the ocean is typically much weaker than the 
rms internal-wave shear, it can have a significant cumula- 
tive effect on short-wave refraction, decreasing the time it 
takes to refract to very short scales. Using ray tracing, we 
illustrate this by following groups of short internal waves 
through a combination of large-amplitude inertia waves and 
a weakly sheared steady current. 

The second aspect is the effect of ray convergence. While 
the presence of steady shear enhances the transport of wave- 
energy toward small scales, the strength of ray convergence 
can influence transport toward larger scales. This is because 
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the weaker the ray convergence the less likely the short waves 
are to reach unstable amplitudes and the more likely they are 
to refract back to larger scale for another cycle of the inertia 
oscillation. Here we find a range of convergence strengths at 
small scale, but mostly we find weak convergence, especially 
compared to convergence in a critical-layer model. 

2. Model Formulation 

The inertia frequency f and the buoyancy frequency N 
are constant, with f - 10-4s -• and N - 26f, the latter 
taken from the Garrett-Munk model for a depth of about 
1000m below the sea surface. Cartesian coordinates are used 

with z positive upwards. The background velocity U - 
(U, V, 0) consists of a random combination of inertia waves 
and a steady geostrophic current Rz: 

NW 

U •- iV - e -ift • U,•ei•'•sin(M,•z) •- Rz (1) 
n--1 

where R is a real constant, NW - 250 is the number of 
inertia waves, and qb,• is a random phase evenly distributed 
between 0 and 2•. The vertical wavenumbers M,• - n•/B, 
where B - 1300m is the buoyancy-frequency depth scale 
in the Garrett-Munk model. The amplitudes U,• are cho- 
sen to give a vertical-wavenumber spectrum for horizontal 
velocity that has the same shape as that of Garrett-Munk 
([Munk, 1981]), but is scaled to give an rms horizontal ve- 
locity of 4cm s -•, or an rms inverse Richardson number 
of 0.7. Note that Garrett-Munk, and hence HWF, use an 
exponential profile for N(z) and a broadband wavenumber- 
frequency spectrum of internal waves without steady cur- 
rents. We use constant N and consider inertia waves and a 

steady current. Because the steady flow in (1) is geostrophic, 
the background density varies in y according to the thermal 
wind relation. Under present assumptions (constant R and 
the Boussinesq limit) such density variations leave N un- 
changed. The choice of constant R is reasonable for typical 
deep-ocean conditions, given that most of the short-wave 
groups in our simulations propagate less than a few hun- 
dred meters vertically and a few kilometers horizontally. 

Ray tracing is used to follow short internal wave groups 
through the background given by (1). The short waves have 
wavenumber vector k - (k, 0, m), intrinsic frequency cb - 
[(k2N 2 +m 2 f2)/(k2+m2)]•/2, and vertical component of the 
group velocity cg -- Ocb/Om. The ray equations, integrated 
numerically, are dz/dt • c 9 and din/dr - -kUz, where 
d/dr - O/Or •-cgO/Oz. Since the background is uniform 
in x, the horizontal wavenumber k remains constant along 
the ray. We choose k- 2•(200m) -•, guided by HWF, who 
associate much of the dissipation in their model with about 
this horizontal scale. 

HWF use a low-pass filter to remove temporarily from 
their background all waves whose vertical wavenumber ex- 
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Figure 1. Top: ray solutions for vertical wavenumber 
along 20 of the 50 rays in a background given by (1) with 
R - 0. Dashed lines are 5m vertical wavelength. Lower 
left: the number of surviving rays as a function of time if 
the 5m cutoff is imposed. Lower right: the percentage of 
surviving rays after 5 inertia periods as a function of cutoff 
wavenumber. 

ceeds the instantaneous vertical wavenumber rn of the short- 

wave group. This is an attempt to satisfy the slowly-varying 
requirements of ray theory. We do not use such a filter. 
For one thing, our entire background would have had to be 
removed whenever a short-wave group reached a buoyancy- 
frequency turning point, where m - 0. More importantly, 
ray-theory validity in our model depends on the smallness 
of fractional changes in wavenumber, not on the magnitude 
of the wavenumber itself. For example, ray theory breaks 
down when fractional changes in wavenumber become large 
near caustics. Caustics can occur at any wavenumber of the 
short waves and cannot be eliminated from our simulations 

by filtering the background. 
We shall often refer to a steady-shear critical-layer model. 

Specifically, we mean one in which Irnl -+ cx• along the ray 
and in which c5 q- kU(z) is constant - not just along the ray 
(guaranteed by the steadiness of the shear) but constant 
throughout space and time. From this constancy, it follows 
that 

- m ( 
when dJ • • N, a result used below. 

3. Results 

We consider first the case without a steady current, i.e. 
R - 0 in (1). Figure 1, shows results for 50 ray integrations. 
In the upper panel, we plot the ray solution for vertical 
wavenumber along 20 of the 50 rays. Each ray integration is 
a different realization of (1). The initial condition is always 
m -- -1.4k, or c5 • 15f. The dashed line across the plot 
indicates the 5m wavelength. HWF terminate their ray inte- 
grations when Ira[ exceeds this value, accounting crudely for 
dissipation. The lower left panel of Figure i shows the num- 
ber of rays that would have survived had this wavenumber 
cutoff been imposed. 

We ran experiments on sets of 50 ray integrations, im- 
posing on each set a different cutoff wavenumber. Figure 1, 
lower right panel, shows the percentage of rays that survive 
the cutoff criterion after propagating for 5 inertia periods, 
as a function of cutoff wavenumber. The dashed vertical line 

represents a 5m cutoff. Doubling the cutoff wavelength to 
10m makes little difference, in absolute terms, to survivabil- 
ity. However halving the cutoff wavelength to 2.5m increases 
the number of survivors by a factor of nearly 20. 

We next add a steady current to the inertia-wave back- 
ground. We choose R so that the steady-shear inverse 
Richardson number R •'/N •' - 0.01 is small compared to the 
rms inverse Richardson number of 0.7 of the inertia waves. 

Repeating similar experiments to those of Figure i leads to 
the results of Figure 2. 

The most rapid changes in vertical wavenumber are again 
due to refraction by the inertia waves, but now there is a 
gradual cumulative effect due to the steady shear. Calcu- 
lation of the ensemble averaged vertical wavenumber 
shows that it decreases approximately linearly with time, 
agreeing closely with the ray solution following one wave 
group in the steady shear only: re(t) = m(t = O)- kRt. 
Thus the time tc for (m) to reach some high-wavenumber 
cutoff mc starting from Im(t -- 0)1 • mc is tc • mc/kR. 

For the present parameter values and mc- 0.2 cpm, tc 
is only about 2.5 inertia periods, or about 43 hours. In 
HWF, the average short-wave survival time (the time it 
takes their short waves to refract to the cutoff wavenum- 

ber) is about 110 hours. In [Flatte, Henyey and Wright, 
1985], whose ray-tracing model is the same as that of HWF, 
the characteristic time for the decay of wave-action (by re- 
fraction past the 5m cutoff) is about 170 hours. HWF and 
[Flatte, Henyey and Wright, 1985] use different initial con- 
ditions than we do, complicating a direct comparison of our 
results with theirs. They initialize the short waves with a 
range of intrinsic frequencies and a horizontal wavelength of 
1000m compared to 200m here. However, their horizontal 
wavenumber spectra fill out quickly, with dissipation (i.e. 
reftaction to the 5m cutoff vertical wavelength) peaking at 
a horizontal wavelength of about 200m. Even at 1000m hop- 
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Figure 2. As in Figure 1 but for a background that in- 
cludes a steady shear of strength R = 0.1N. 



BUCKLEY ET AL.' WEAK STEADY SHEAR IN THE REFRACTION OF SHORT INTERNAL WAVES 2879 
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Figure 3. Scatter plot of the ray-divergence parameter 
versus U•/N. Each point represents a value computed at 
equal time intervals along a ray path once the vertical wave- 
length decreases (and continues to decrease) below 10m. 

izontal wavelength , our cutoff timescale t• is comparable to 
the wave-action decay time of [Flatte, Henyey and Wright, 
1985]. 

In fact, the timescale t• is likely to overestimate the wave- 
action decay time in our results. This is because in deter- 
mining Ira) and t• we did not apply a wavenumber cutoff to 
remove rays from the ensemble. Many of the rays will reach 
the cutoff well before the mean wavenumber does. If those 

rays are removed using a 5m cutoff wavelength, we obtain 
the results in the lower left panel of Figure 2. Here we see 
that all short-wave groups reach the cutoff in just over three 
inertia periods. The average survival time is less than one 
inertia period. 

A proper comparison with HWF should incorporate three- 
dimensional effects omitted from the present model, such as 
short-wave transport in horizontal wavenumber, short-wave 
propagation normal to the current direction, and, in relation 
to the discussion below, ray divergence in three dimensions. 
These additional complications can be examined using the 
ray formulation presented in an on-line supplement x and 
conveniently expressed in variables that are non-singular at 
a caustic. 

The lower right panel of Figure 2 is included as a warning 
that timescale estimates in this study, with and without 
steady-shear, increase as the cutoff wavelength decreases. If 
the cutoff wavelength is reduced to 2m, nearly one-half of 
the rays in the example of Figure 2 survive after 5 inertia 
periods. Without mean shear, nearly all rays survive a 2m 
cutoff after 5 inertia periods, as indicated in Figure 1. 

So far our ray integrations have considered a single ray 
at a time. The orientation of neighboring rays is also im- 
portant, since it controls the change in wave-action density 
along the ray. HWF consider the density of wave-action in 

XA supporting appendix is available via Anohymous 
FTP :' from agu.org, directory APEND (Username--anonymous, 
Password--guest), or on diskette which may be ordered by mail 
from AGU, 2000 Florida Ave.,NW, Washington, DC 20009 or 
by phone at (800) 966-2481; $15.00. Payment must accompany 
order. 

phase space, where the coordinates include the wavenum- 
ber components and position. Wave-action density in phase 
space is constant along the trajectory through phase space, 
a result used by HWF to obtain estimates of internal-wave 
spectra. 

We consider the space-time density of wave-action A(x, t), 
from which measures of linear instability (wave-steepness, 
perturbation shear) are easily computed along each ray. 
This wave-action density depends on the relative orientation 
of neighboring rays through the divergence of the group ve- 
locity vector: dA/dt = -AV ß cg. Under present conditions 
we have A(z, t) and 

dA/dt - -Af•.•.•Om/Oz, (3) 

where f•(k, m,z, t) = d•(k, m) + kU(z,t). 
The ray equation for Om/Oz, obtained by differentiating 

the ray equation dm/dt = -kU• with respect to z, for the 
idealized situation considered here is 

dldt (OmlOz) = -kU,, - !2,•,•(OmlOz) •'. (4) 

Using the approximate form for the internal-wave disper- 
sion relation & • kN/Iml, (a) becomes 

(A&)-x dA/dt = -2m -•' Om/Oz. (5) 

This shows that the fractional change in A over the time 
•-x is proportional to m-•'Om/Oz, the fractional change in 
m over a vertical distance of Iml - x 

We call m-•'Om/Oz the ray-divergence parameter. It is 
positive when rays diverge, negative when rays converge, 
and infinite at a caustic and at a rotating critical layer 
(see (2)). 

To proceed with the ray integrations we must specify an 
initial condition for &m/Oz. In a critical-layer model the 
appropriate initial condition comes from (2). For our time- 
dependent shear we know of no obvious initial choice for 
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Figure 4. Sample ray-tracing solution. Each horizontal 
axis is time in inertia periods. Top: lull normalized by its 
initial value. The solid line (left axis) is the time-dependent 
ray solution. The spike at 0.09 inertia periods is a caustic. 
The dashed line (right axis) is for constant c•A, with c• ob- 
tained numerically. Middle: vertical wavenumber. Dashed 
line is 5m wavelength. Bottom: ray-divergence parameter. 
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Om/Oz; so we simply initialize it using (2), though initializ- 
ing to Om/Oz = 0 does not alter the conclusions below. 

Figure 3 shows a scatter plot of m -20m/Oz versus Uz/N 
for 20 ray integrations. The data points are restricted to 
values for which the vertical wavelength of the short waves 
is less than 10m and is decreasing. We choose wavelengths 
shorter than 10m because dissipative processes are believed 
to be important at these scales. Modified forms of (3) and 
(4) were integrated, which are not singular at caustics (see 
[Broutman, 1986]). Parameter values and initial conditions 
are the same as in Figure 2. 

The dashed line in Figure 3 is m -• Om/Oz = -Uz/N. For 
the steady-shear critical-layer problem, m-•Om/Oz is con- 
strained to be below this line (or on it ff f = 0, see (2)). For 
our combination of inertia and steady shear, almost all of 
the data points lie above this line, indicating that at short 
vertical scale, the strength of ray convergence is almost al- 
ways weaker than in a steady-shear critical-layer encounter. 
In nearly half of the data points, the rays actually diverge 
as they refract to small scale. In the majority of cases, 
the wave-energy density d•A decreases with increasing ver- 
tical wavenumber, contrary to behavior in a steady-shear 
critical-layer encounter. Conditions of weak convergence 
in time-dependent shear were also reported by [Broutman 
et al., 1997] and by [Eckermann, 1997], but for a simpler 
background consisting of one long wave. 

The effect of weak ray-convergence on a short-wave shear 
amplitude, [u•[, is shown in Figure 4. Here u is the 
x-component of the perturbation velocity due to the short 
waves, so [u• [= [mu[ represents the magnitude of a pertur- 
bation shear, an important indicator of instability. In the 
upper panel, the solid line (left axis) is computed from the 
ray-tracing solution for wave-action density. The dashed line 
(right axis) is computed by regarding wave-action flux coA 
as constant, as is sometimes assumed in steady-shear refrac- 
tion models. The point of the plot is to illustrate that the 
growth in [u• [ (top panel) with increasing vertical wavenum- 
ber (middle panel) can be quite modest in time-dependent 
shear due to weak ray convergence (lower panel). For ex- 
ample, from 1.85 to 2.4 inertia periods -m/k increases by 
a factor of about 3.2. The corresponding factor of increase 
in [u•[ is 14.5 when assuming constant c•A but only 2.9 for 
the full ray-tracing solution. 

4. Discussion 

The first point to make is that although the inertia waves 
in this study generate much stronger shears than the steady 

current, the steady current contributes a gradual but impor- 
tant cumulative component to the refraction. The persis- 
tence of the steady shear compensates for its weak strength. 

The second point to make is that our results show vari- 
ability in the strength of ray convergence as the short waves 
refract to small vertical scales. The ray paths are almost 
as likely to diverge as converge, and when they do converge, 
they are unlikely to converge as strongly as in a conventional 
critical layer interaction. There remains the interesting pos- 
sibility that the presence of weak steady shear in an internal- 
wave background has partially counter-acting effects on the 
mixing rate: it may speed up short-wave transport to small 
scales, but it may also delay short-wave instability by weak- 
ening the convergence. 
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